Sir:

In the course of screening for new substances, a new antibacterial antibiotic, thiotetromycin (1)¹⁾, mp 92°C, $[\alpha]_D^{35}$ +124° (*c* 1.0, MeOH), C_{13} -H₁₃O₂S (M⁺, *m/z* 238.102), was found in the culture broth of *Streptomyces* sp. strain OM-674.

We now report structural analysis of **1** by means of NMR spectroscopy. The following data suggested that **1** possesses two chromophore moieties, a conjugated diene and an α , β -unsaturated thiolactone: UV $\lambda_{\max}^{\text{ErOH}}$ 238 (ε 30,100) and 300 nm (4,700) and IR ν_{\max}^{CHCL} 1620 cm⁻¹ O

(R-S-C-C=C). The ¹³C NMR spectrum of 1 suggested the presence of a carbonyl carbon (δ 198.3), an oxygenated olefinic carbon (δ 179.2), five olefinic carbons (\$ 141.3, 140.4, 129.4, 118.1 and 113.8), a quaternary carbon (δ 60.8), two methylenes (δ 33.3 and 16.1) and three methyls (δ 12.5, 12.3 and 8.5). The presence of an enol in 1 was confirmed from the IR absorption at 1780 cm^{-1} in the monoacetate 2, which was obtained by acetylation of 1 with Ac₂O/pyridine. The disappearance of a broad signal at δ 7.5 in the ¹H NMR spectrum of 1 on addition of D₂O also confirmed the presence of an enol. The ¹H NMR spectrum indicated the presence of one methyl (δ 1.75) and one ethyl group (δ 1.03, 3H, t, J= 7.5 Hz and δ 2.30, 2H, q, J=7.5 Hz) attached to double bond, one ethyl group (δ 0.96, 3H, t, J =7.2 Hz and δ 2.10, 2H, q, J=7.2 Hz) attached to a quaternary carbon, four olefinic protons (δ 5.10, 5.30, 5.60 and 6.30) and one enolic proton. The detailed proton spin decoupling experiment of 1 revealed the presence of a butadienyl moiety [I] containing a methyl group. The validity of the partial structure [I] was also confirmed from the 13C{1H} long range selective proton decoupling (LSPD) experiment of 1. The methyl group of C-13 in [I] should be located at C-6 from the observation that irradiation of the methyl proton (δ 1.75) collapsed each of the two olefinic carbons at C-5 (δ 129.4, broad singlet) and at C-7 (δ 141.3, multiplet), into a clear doublet (${}^{3}J_{CH}$ = 4.3 Hz with H-7 for C-5 and ${}^{3}J_{CH}$ = 9.3 Hz with H-5 for C-7, respectively), since the values of ${}^{2}J$ (C-7, H-8) and ${}^{2}J$ (C-5, H-11) are negligibly small. Furthermore, the configuration of the

LSPD Pattern [${}^{2}J_{CH}$, ${}^{3}J_{CH}$ (Hz)]

. . .

Table 1. ¹³C NMR data in CDCl₈.

Carbon No.	Chemical shift (ppm)/TMS		
	1	3	4
1	198.3 (s)*	194.0	185.8
2	118.1 (s)	120.0	114.7
3	179.2 (s)	178.2	201.5
4	60.8 (s)	60.2	67.7
5	129.4 (d)	131.0	131.5
6	140.4 (s)	139.1	139.7
7	141.3 (d)	141.5	141.4
8	113.8 (t)	113.5	113.5
9	33.3 (t)	33.6	34.0
10	12.5 (q)	12.4	13.6
11	16.1 (t)	17.4	16.6
12	8.5 (q)	8.6	8.8
13	12.3 (q)	14.4	12.8
3-OCH ₃		59.6	
$1-OCH_3$			59.0

* Multiplicity: s; singlet, d; doublet, t; triplet, q; quartet.

conjugated diene moiety was found to be identical with that of thiolactomycin^{2, 8)}, with ethyl groups being replaced by methyl groups in the latter case, from comparison of both NMR spectral data.

The existence of two ethyl groups, a quaternary carbon and a carbonyl and enolic carbons in the remaining portion $C_8H_{11}O_9S$ and the following LSPD experiment of 1 led us to the 5-membered α,β -unsaturated thiolactone ring [II] as another chromophore. Upon irradiation of the methylenic proton (δ 2.30) at C-9, the carbonyl carbon (δ 198.3, ${}^{3}J_{CH}$ = 5.4 Hz) and the olefinic carbon (δ 118.1, ${}^{2}J_{CH}$ = 4.6 Hz and ${}^{3}J_{CH}$ = 5.4 Hz) collapsed to a singlet and a quartet, respectively. This suggested that one of two ethyl groups must be located at the α -position to the thioester carbonyl. On the other hand, upon irradiation of the olefinic proton at δ 5.60, the methylenic carbon (δ 16.1, broad doublet, ${}^{\circ}J_{CH}$ = 3.6 Hz) at C-11 and the broad carbon signal (δ 179.2) at C-3 collapsed to a broad singlet and a broad doublet $({}^{8}J_{CH} = 3.6 \text{ Hz})$ coupled with a hydroxyl proton, respectively. Upon the same irradiation under the presence of D₂O, the signal at C-3 appears as a broad triplet coupled with the methylenic protons at C-9 and C-11. This spectral evidence means that the terminal carbon at C-5 in the butadienyl moiety, an ethyl group and an enolic group must be attached to the same quaternary carbon, which is bonded also to a sulfur atom. Further, the observation of a fermentation ion peak at m/z 140 (C₈H₁₂S) in the mass spectrum of 1 afforded the structural evidence for CH₂=CH- $C(CH_3) = CH - C(CH_2 - CH_3) - S$ -. Thus, we can propose the most suitable structure 1 for thiotetromycin. The validity of the structure as a 5membered thiolactone was also supported by the spectroscopic characterization of two monomethyl ethers, $3 [\alpha]_{D}^{27} + 63.5^{\circ} (c \ 1.0, \text{CHCl}_{s}); \text{UV}$ $\lambda_{max}^{\rm EtOH}$ 238 nm (ϵ 16,600); IR $\nu_{max}^{\rm CC1_4}$ 1620 cm $^{-1}$ and ¹⁸C NMR δ 194.0 (thioester carbonyl), and 4: $[\alpha]_{\rm D}^{27}$ $+194.4^{\circ}$ (c 1.0, CHCl_s); UV λ_{max}^{EtOH} 235 (ε 16,100) and 313 nm (6,200); IR v max 1580 cm⁻¹ and 18C

NMR δ 201.5 (α , β -unsaturated ketone carbonyl), obtained by treatment of **1** with diazomethane. These spectral data demonstrated that **4** is an tautomeric isomer of **3**. The synthesis of **1** and its related compounds are now in progress.

Acknowledgment

We wish to acknowledge Asahi Chemical Industry Co., Ltd. for fermentation support. We are also indebeted to Dr. M. SHINDO in Chugai Pharmaceutical Co., Ltd. for a gift of thiolactomycin.

> SATOSHI ŌMURA AKIRA NAKAGAWA RIMIKO IWATA AKIKO HATANO School of Pharmaceutical Sciences, Kitasato University and The Kitasato Institute, Minato-ku, Tokyo 108, Japan

(Received July 15, 1983)

References

- ÖMURA, S.; Y. IWAI, A. NAKAGAWA, R. IWATA, Y. TAKAHASHI, H. SHIMIZU & H. TANAKA: Thiotetromycin, a new antibiotic. Taxonomy, production, isolation, and physicochemical and biological properties. J. Antibiotics 36: 109~ 114, 1983
- OISHI, H.; T. NOTO, H. SASAKI, K. SUZUKI, T. HAYASHI, H. OKAZAKI, K. ANDO & M. SAWADA: Thiolactomycin, a new antibiotic. I. Taxonomy of the producing organism, fermentation and biological properties. J. Antibiotics 35: 391~ 395, 1982
- SASAKI, H.; H. OISHI, T. HAYASHI, I. MATSUURA, K. ANDO & M. SAWADA: Thiolactomycin, a new antibiotic. II. Structure elucidation. J. Antibiotics 35: 396~400, 1982